Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Hum Vaccin Immunother ; 19(1): 2171233, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2246307

ABSTRACT

The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.


Subject(s)
COVID-19 , Mycobacterium smegmatis , Mice , Humans , Animals , Mycobacterium smegmatis/genetics , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Viruses ; 14(3)2022 03 03.
Article in English | MEDLINE | ID: covidwho-1765946

ABSTRACT

Numerous pathogenic microbes, including viruses, bacteria, and fungi, usually infect the host through the mucosal surfaces of the respiratory tract, gastrointestinal tract, and reproductive tract. The mucosa is well known to provide the first line of host defense against pathogen entry by physical, chemical, biological, and immunological barriers, and therefore, mucosa-targeting vaccination is emerging as a promising strategy for conferring superior protection. However, there are still many challenges to be solved to develop an effective mucosal vaccine, such as poor adhesion to the mucosal surface, insufficient uptake to break through the mucus, and the difficulty in avoiding strong degradation through the gastrointestinal tract. Recently, increasing efforts to overcome these issues have been made, and we herein summarize the latest findings on these strategies to develop mucosa-targeting vaccines, including a novel needle-free mucosa-targeting route, the development of mucosa-targeting vectors, the administration of mucosal adjuvants, encapsulating vaccines into nanoparticle formulations, and antigen design to conjugate with mucosa-targeting ligands. Our work will highlight the importance of further developing mucosal vaccine technology to combat the frequent outbreaks of infectious diseases.


Subject(s)
Communicable Diseases, Emerging , Vaccines , Adjuvants, Immunologic , Antigens , Communicable Diseases, Emerging/prevention & control , Humans , Immunity, Mucosal , Mucous Membrane , Vaccination
3.
Hum Vaccin Immunother ; 17(12): 5069-5075, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1488130

ABSTRACT

BACKGROUND: COVID-19 pandemic continues to pose a huge threat to public health. Mass vaccination is needed to achieve herd immunity against SARS-CoV-2. Currently, several vaccines are being inoculated on a large-scale. The willingness of COVID-19 vaccination had been well investigated in the pre-vaccination era, but no reported data in the post-vaccination era yet. METHODS: We conducted a large-scale survey among industrial workers during the vaccination campaign in China. Chi-square test and rank sum test were used to identify differences for various intentions regarding COVID-19 vaccination. Univariate analysis and multivariate regression models were utilized to analyze the relationship among demographic factors, related influencing factors and acceptance of COVID-19 vaccination. RESULTS: A total of 23,940 industrial workers were included, 66.0% were willing to take COVID-19 vaccine, 16.6% were unwilling, and 17.4% were unsure. Participants were more likely to get vaccinated if they were male, aged 45-65, being good educated, married, or being recommended by doctors or nurses. Participants with strong risk perception of COVID-19 infection, strong confidence in COVID-19 vaccine, high attention to COVID-19 vaccine, good health status, bad health habit, and a history of vaccination within three months were also more likely to be vaccinated. CONCLUSIONS: This study calls for more attention and health-related education among industrial workers to improve their acceptance of COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , COVID-19/prevention & control , China/epidemiology , Cross-Sectional Studies , Humans , Male , Mass Vaccination , Middle Aged , Pandemics , SARS-CoV-2 , Vaccination
4.
Viruses ; 13(2)2021 02 21.
Article in English | MEDLINE | ID: covidwho-1090282

ABSTRACT

With the rapid global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, a safe and effective vaccine against human coronaviruses (HCoVs) is believed to be a top priority in the field of public health. Due to the frequent outbreaks of different HCoVs, the development of a pan-HCoVs vaccine is of great value to biomedical science. The antigen design is a key prerequisite for vaccine efficacy, and we therefore developed a novel antigen with broad coverage based on the genetic algorithm of mosaic strategy. The designed antigen has a potentially broad coverage of conserved cytotoxic T lymphocyte (CTL) epitopes to the greatest extent, including the existing epitopes from all reported HCoV sequences (HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2). This novel antigen is expected to induce strong CTL responses with broad coverage by targeting conserved epitopes against multiple coronaviruses.


Subject(s)
Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Viral Proteins/immunology , Viral Vaccines/immunology , Humans , Pandemics , T-Lymphocytes, Cytotoxic/immunology
5.
Hum Vaccin Immunother ; 17(7): 2279-2288, 2021 07 03.
Article in English | MEDLINE | ID: covidwho-1057794

ABSTRACT

Background: A safe and effective vaccine against COVID-19 has become a public health priority. However, little is known about the public willingness to accept a future COVID-19 vaccine in China. This study aimed to understand the willingness and determinants for the acceptance of a COVID-19 vaccine among Chinese adults.Methods: A cross-sectional survey using an online questionnaire was conducted in an adult population in China. Chi-square tests were used to identify differences for various intentions regarding COVID-19 vaccination. The t test was used to identify differences among vaccine hesitancy scores. Multivariable logistic regression was used to analyze the predicated factors associated with the willingness to receive a COVID-19 vaccine.Results: Of the 3195 eligible participants, 83.8% were willing to receive a COVID-19 vaccine, and 76.6% believed the vaccine would be beneficial to their health; however, 74.9% expressed concerns or a neutral attitude regarding its potential adverse effects. Of the participants, 76.5% preferred domestically manufactured vaccines and were more willing to be vaccinated than those who preferred imported vaccines. Multivariable logistic regression indicated that lack of confidence, complacency in regard to health, risk of the vaccine, and attention frequency were the main factors affecting the intention to receive a COVID-19 vaccine.Conclusion: Our study indicated that the respondents in China had a high willingness to accept a COVID-19 vaccine, but some participants also worried about its adverse effects. Information regarding the efficacy and safety of an upcoming COVID-19 vaccine should be disseminated to ensure its acceptance and coverage.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , China , Cross-Sectional Studies , Humans , SARS-CoV-2 , Surveys and Questionnaires , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL